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1. Introduction. In this paper we apply the monotone iterative method to obtain minimal and
maximal solutions to the nonlinear boundary value problem (BVP)

f(t7 $, :13/, ﬂ’,‘”) = 0, 0 S a § t S bJ (1 1)
z(a) = A, z'(b) = B, ’

where the scalar function f(¢,z,p,q) is continuous and has continuous first derivatives only on
suitable subsets of [a,b] x R®.

For results, which guarantee the existence of C?[a,b]-solutions to BVPs for the equation
z" = f(t,z,z',2") — y(t) with various linear boundary conditions, see [6,7,17,18,21-23]. Conserning
the uniqueness results, we refer to [21]. A result, conserning the existence and uniqueness of C?[a, ]-
solutions to the BVP for the equation = = f(t,z,z', 2"), with general linear boundary conditions,
can be found in [27]. The results of [19] guarantee the existence of W2 [a, b]-solutions or of C2[a, b]-
solutions to the Dirichlet BVP for the equation f(¢,2,2’,2") = 0, where the function f (t,z,p,q) is
defined on [a,b] x R"x R" XY, and ¥ is a non-empty closed connected or locally connected subset of
R". Finally, the CZ[a,b]-solvability of BVPs for the equation f(t,z,2',z") = 0 with fully nonlinear
boundary conditions is studied in [12].

Note that, in the literature, the monotone iterative method is applied on BVPs for equations of the
forms z" = f(t,2,2') and (¢(2)) = f(t,2,2) with various boundary conditions (see, for example,
[2-5,9-11,13,15,20,26,28]). The sequences of iterates, considered in [2-5,10,13,28], converge to the
extremal solutions, while the sequences of iterates, considered in [9,15,19], converge to the unique
solution. The first elements wug(t) and wp(t) of such sequences of iterates usually are lower and
upper solutions respectively of the problems under consideration (see, for example, [2-5,10,13,28]).
In order to derive the needed monotone iterates, the authors of [2-5,10,13,15,28] use suitable growth
conditions. For more applications of the monotone iterative method, see [1,14,16,25,29].

In this article, following [11], we obtain the extremal solutions to (1.1) under assumption of the
existence of suitable barrier strips (see Remarks 2.1 and 2.2 below), which immediately imply the
first iterates wg(t) and wp(¢). A version of Theorem 5.1 of [12] implies the existence of the next
iterates, and a suitable comparison result guarantees the monotone properties for the sequences of
iterates. Finally, the Arzela-Askoli’s theorem ensures the existence of the extremal solutions of the
problem (1.1) as limits of the sequences of iterates.



In order to obtain our results, in what follows, we will make the following basic hypotheses.

2. Basic hypotheses. The following four hypotheses will be a tool to obtain our results.

H1. There are a constant K > 0 and constants F, Fy, L, Ly such that
Fa<A<La, Fi<F<B<L<I,

gnd for Tu= {{t,a): a £ < b, Ft < o< Lt}
Ftt,,p,0) + Kg 20 on {(t,2,p.0): (,2) €T, pe L, I}, g€ (~o0,0) }.
f(t,z,p,q) + Kg<0 on {(t,m,p,q): (t,z) €T, pe [Fy,F|, g€ (0,00)}.

Remark 2.1. Set ®(¢,2,p,q) = f(t,,p,q) + Kq. Then, the strip A; = [a,8] x [L, L;], on
which ®(t,z,p,q) > 0, and the strip Ay = [a,b] x [F}, ], on which ®,(t,z,p,q) < 0, are such that
the graph of the function #/(t), t € [a,b], does not cross A; and A, and is located between them.
For this reason Ajand A, are called barrier strips for (), t € [a,b].

H2. There are constants G;, G, H, H;", i =1,2, such that

Gf>Gf>2C, G; >Gi>2C, Hf <Hf <-2C, H; <H; £-2C,

where C = max{|L|,|F|}/(b—a),
( f(t,z,p,q) and f,(t,z,p,q) are continuous and f,(t,z,p,q) <0 for

(t;$>P:Q') € [a’=b] X [ml - & My +€] X [F_ 81L+€1 x [m2 _E:MQ +€]:

ﬁ where : m; = min{Fa, Fb}, M; = max{La, Lb}, my = mjn{H;,HQ_}, (2.1)
M, = max{G;,Gg}, and £ > 0 is fixed and such that Hf > Hy +¢,

| Hy > H; +¢, Gf >Gf +¢, Gy >G7 +5

fit,z,p,9), fo(t,z,p,q) and fp(t,x,p,q) are continuous for
(t,z,p,q) € [a,b] x [mq, My] x [F, L] x [ma, M),
filt.z,p.9) + falt,z,0,9)p+ folt,z,p,q)q 2 0for
(t,2,,9) € a,8) x [my, M1] x [F, I x ([HS, B1U(GT.G1)).
and fi(t,z,p,q) + fo(t,z,0,9)p+ fo(t.2,p,q)q < 0 for
(t,2,p.9) € a.8] x [ms, M1] x [P, I] x ([H; , H; U [G7.G3)),

where F and L are the constants of H1.



Remark 2.2. Set ®3(t,2,p,9) = filt.2.p.q) + fo(t,z,p,q)p + fo(t,z,p,q)g. Then, the pair
of strips Oy = [a,b] x ([HF,H| U [GT,G]]), on which ®5(¢,z,p,q) > 0, and the pair of strips
Qy = [a,b] x ([Hy,H; | U[G7,G5]), on which @y(t,x,p,q) < 0, are such that the graph of the
function 2(t), ¢ € [a,b], can not cross the outer strips, of the four such ones, defined by Q;and ,.
For this reason the outer strips of Q;and Q, are called barrier strips for z(t), t € [a, ).

H3. For mz=min{H} H;} and M; = max{G7,G7}
h(A,t,z,p,mg—e)h(A t,z,p, Ma+e) <0 for (At,z,p) € [0,1]x[a,b]x[mi—e, My+e|x [F—e, L+e]

where h(A,t,2,p,q) = (A—1)Kqg+ Af(t,z,p,q), F, L and K are the constants of H1, and
Hf, H{,Gi, Gy, C,my, My and & are as in H2.

H4. f:(t,z,p,q) 20 for (t,2,p,q) €T x [F, L] x [min {H;", H; } ,max {G{,G1}],
where the trapezoid T and the constants F and L are asin H1, and Hy, Hy, G and Gy
are the constans of H2, and m3 and M; are as in H3.

3. The main result. For any function y(t) € Cla,b] bounded on [a,b], we define a map A as
follows

z = Ay,
if and only if z(t) € C?[a,b] is a solution to the BVP
f(t1 y(t)::c’J $”) = 07 te [a'T b]t (31)
sla) =4, 2 (t)=B;

We will show that under the hypotheses H1 , H2 and H3 the map A is uniquely determined. For
this reason, we consider two sequences {u,} and {v,}, n=0,1,..., defined by the formulas

Upty = A, and vgyi =.Av,,

where wg = F't, vp = Lt, t € [a,b], and F and L are as in H1. Now we formulate the following
our main result.

Theorem 3.1. Let the hypotheses H1 - H4 be hold. Then there are sequences {u,} and
{vn},n=0,1, ..., such that for n — +co

Uy — U™, v, =M and uogulS...Sun<...SumgzgvMS...gvng...gvlgfuo,

where u™(t) and v¥(t) are the minimal and mazimal solutions of the BVP (1.1) respectively, and
z(t) € C%[a,b] is a solution of (1.1).

The proof of this statement can be found at the end of this article and is based on the auxiliary
results, which we present in the next section.

4. Auxiliary statements. We begin this section with an existence result, which is a modification
of Theorem 6.1 of [8, Chapter II]. Namely, we consider the family of BVPs

{ Ka' = A(Ka" + f(t,5(6),,2")), t€al] (4.1)x
wlay=A, 2'{b)= B,

where A € [0,1] and K > 0, and formulate the following



Lemma 4.1. Assume that there are constants Q;, i =0,1,...,5, independent of A such that:

(i) For each solution z(t) € C%[a,b] of (4.1)x it holds

Qo < z(t) < Q1, Q2 < Z'(t) < Qs, Qua <2"(t) < @5, t € [a,8].
Moreover, assume that:

(ii) f(t,z,p,q) and f,(t,z,p,q) are continuous, and fo(t,z,p.q) <0 for
(t,2,p,q) € [a,b] X [Qo, Q1] X [Q2, Q3] X [Qs, Qs),

(i) A\t z,p,QOR(N L2, p,Qs) <0 for (A t,2,p) € A:=[0,1] X [a,8] x [Qo, Q1] X [Qs, D],
where h(\t,2,p,q9) = (A —1)Kq+ A\f(t,z,p,q).

Then the BVP (3.1) has a C?[a, b]-solution for each y(t) € Cla,b] such taht Qo < y(t) < @1,
t € [a,b].

Proof. In view of (ii) and (iii), we conclude that there is a unique function G(A,t,z,p) which is
continuous on A and such that

g=G(\t,z,p) for (A\t,z,p) €A
is equivalent to the equation
h(/\yt,-?:P:Q) =0 on A X [Q47Q5]‘

Note that h(0,t,z,p,0) =0 yields

G(O,t,.’f),p) =0 for (t,.’L‘,p) = [a, b} x [QU: Ql] X [QQ)Q3]' (42)

Thus, the family (4.1), is equivalent to the family of BVPs
' = G\ t,yt), ), té€lab, 43
{ s(a) = A z(b) =B, (43)

where A € [0,1].
Now, define the set

U = {a(t) € C%la.b]: 2(t) € (Qu, @), ') € (Qa, Qu), 2'(1) € (Qu.Q9)].

which is an open subset of the convex set Cgla,b] of the Banach space C?[a,b] and consider the

map
N : Cé[a,b] — Cla,b], defined by Nz =z",

where C3la,b] = {z € C?[a,b] : 2(a) = A, #'(b) = B}. It is easy to see that the map
S:C3 [a,b] — Cla,b], where Sz =z" and C2 [a,b] = {z € C?[a,b] : z(a) =0, £'(b) = 0},

is one-to-one and the problem Sz = 0, z(a) = A, z'(b) = B, has a unique solution I. Then
N-1: Cla,b] — C%la,b] exists, is continuous, and moreover

Nls=8"1s+1



Let H,: U — C3la,b] be defined by
Hyz = N"'G,j(z), A € [0, 1],

where
j: Chla,b) — C'a,b] is defined by jz =z,
Gy : CYa,b] — Cla,b] is defined by (Gaz) () = G(A,t,y(t),zc’(t)), xelo,1].

Clearly, H, is a compact homotopy, because j is a completely continuous embeding, and G, and
N~ are continuous. Moreover, Hyz = z implies

r = N"1G,j(z).
Hence, by the definition of N™!, we have
z = 871Gyjlz) + 1.
Finally, since SI =0, it follows that
Sz = G,j(z).

Thus, the fixed points of H, are solutions to (4.3) and obviously H, has no fixed points on 8U. In
view of (4.2), the map Hy, which has the form Hyz = I, is constant. Moreover, I, as the unique
solution of (4.1)9, belongs to the set U. Hence, by Theorem 2.2 of [8], the map Hj is essential.
The topological transversality theorem of [8] implies that H; is also essential, i.e. for A =1 (4.3)
has a solution. Moreover, for A =1 (4.3) coinsides with (3.1). Therefore, the problem (3.1) has a
solution. The proof of the lemma is complete.O

In order to obtain our next auxiliary results, we introduce the following two sets
V = {y(t) € Cla,b] : Ft <y(t) < Lt, t € [a,8]},
Vi={y(t) € C'la,b]: Ft<y®t) <Lt, F<y/(t) < L, t € [a, 8]},

where the constants Land F are as in H1, and formulate the following results.

Lemma 4.2. Let H1 be hold and z(t) € C*[a,b] be a solution to (4.1), with y(t) € V. Then
the following statements hold:
(i) If there is an interval T1 C [a,b] such that

L<z'(t)< Ly for teTy, (4.4)

then z"(t) >0 for t € Ti.
(1) If there is an interval T, C [a,b] such that Fy < 2'(t) < F fort € Ty, then z"(t) <0 for
teTs.

Proof. Since the proofs of (i) and (ii) are similar, it is enough to show that (4.4) implies z”(t) > 0
for ¢ € T1. Indeed, the assertion is true for A = 0. Now, let ) € (0,1] and assume that there is a
to € T1 such that z"(tp) < 0. Then

0> Kz"(to) = A[Kz"(to) + f(to, z(t0), Z'(t0), 2" (t0))] > 0.

The obtained contradiction proves the assertion. O



Lemma 4.3. Let H1 be hold, and z(t) € C?[a,b] be a solution to (4.1)x with y(t) € V. Then

Ft<z(t) <Lt, F<2@t)<L for tela,b].

Proof. Consider the sets
Yo={t€[a,bl: L<a'(t) <L} and Y1 ={t€[o,b]: FA <2(t) < F}

and suppose that they are not empty. Then, using the continuity of Z'(t) and the inequality
F < 2/(b) < L, we easily conclude that there are closed intervals

[to,70] C Yo and [t;, ] EY)
such that
Z'(ty) > z'(70) and 2z'(t1) < 2'(11). (4.5)
On the other hand, by Lemma 4.2, we have
z"(t) > 0 for t € [to,70] and z"(t) <0 for t € [t1, 7]
and therefore, we have
z'(to) < 2'(r0) and 2z'(t1) > z'(11).

But this contradicts (4.5). The obtained contradiction shows that Yo and Y; are empty, and so we
see that
F<z(@t)<L for t€]la,b].

Integrating this expresion from a to ¢ and using the fact that Fa < A < La, we get
Ft<z(t) < Lt, t € a,b]

which concludes the proof.O]

Remark 4.1. Let (t) € C2[a,b] be a solution to (1.1). Then, in view of Lemma 4.3, if F'= L,

it follows that z'(t) = B, t € [a,b]. Now, using Fa < A < La, we see that z(t) = Bt, t € [a,b], is
the unique C?[a, b]-solution to the problem (1.1).

Lemma 4.4. Let H1 and H2 be hold, and z(t) € C?[a,b] be a solution to (4.1)x with y(t) € Va.
Then
ms < z'(t) < Ms, t € [a,b],

and there is a constant D independent of A such that

lz” ()| < D for t € [a,b].

Proof. By the mean value theorem, thereis a £ € (a,b) such that z"(&) = [2/(b) — 2/ (a}]/(b—a)-
Since Lemma 4.3 implies

F<z'(t)<L for te€[a,b], (4.6)

we see that )
z"(€) < 2C < GY, (4.7)



~1

where C' = max{|L|,|F|}/(b — a). Now suppose that the set
Y ={t€ [0,8] +Gf <2"(t) <G5}
1s not empty. The continuity of ”(t) and (4.7) imply that there is a closed interval
[to, 0] Y such that z"(tp) > z”(70). (4.8)
Since (4.6) holds for t € [tg, 70) and
Gf <z"(t) < GY for t € [to, T0),

{ mlgFtsy(t)SLtSMl fOI' te [tO:TO])

F<y@)<L for tE€ [to, ), (4.9)

in view of H2, we have

i(t)=fa(£.3(0),2 (1), 2"(1)) <0, t € [to, o]

and for ¢ = [to, To]

Wo(t)= £u(t.9(0),2(0), (1) + £ (8,98, 2@, 2"(0) ¥ (©) + £, (30, 2(0),2"(1) )" (1) > 0.

Thus, using the last two inequalities and the continuity of f, fz, fp and f, on [to,To], We conclude
that " is continuous on [tg, 7o] and

() = ATy (8)/[K(1 = X) = ATy ()] >0 for t€ [to,7o). (4.10)

Consequently,
:L‘” (to) S CU” (TO),

which contradicts (4.8). Thus,
z'(t) < Gy for t€a,€].

The inequality
Hy <2"(t), t€a¢]

can be obtained in the same manner.
Similarly, it is easy to show that

Hf <2"(t) <Gy, te[b]

Finally, using (4.6), (4.9), the fact that z” is bounded on [a,d] and the continuity of the partial
derivatives of f(t,x,p,q) onthe set [a,b] X [my, M1] X [F, L] x [m3, Ma], from (4.10) it follows that
there is a constan D independent of A such that

12" (t)] < D for t € [a,b].
The proof of the lemma is complete. O

Lemma 4.5. Suppose that H1, H2 and H3 are hold. Then the BVP (3.1) has a C?[a, b]-solution,
if y(t) € V1.
Proof. Let z(t) € C?[a,b] be a solution to (4.1),. Then, by Lemma 4.3, we have

F—e<d({t)<L+e for t€][a,b and



my —e <z(t) < My +¢ for t€a,b],
while, by Lemma 4.4, we see that
ms—e<2'(t) < My+e for te€la,b]

where £ > 0 is as in H2. Thus, the condition (i) of Lemma 4.1 holds for Qo = my1—¢, Q1= M+,
Qo=F—¢,Qs=L+¢, Q=ms—¢c and Qs = M; + . Moreover, from (2.1) and H3 it follows
that the conditions (ii) and (iii) of Lemma 4.1 are satisfied. Besides,

my—e <y(t) < My+e for t€]a,b.
So, we can apply Lemma 4.1 to conclude that the problem (3.1) has a solution in C?[a,b]. The proof
of the lemma is complete.O
Below, we need the following two lemmas which are adopted from [24].
Lemma 4.6. [24, Chapter I, Theorem 1] Suppose ¢(t) satisfies the differential inequality
¢ +g(t)g >0 for a<t<y, (4.11)

with g(t) a bounded function. If ¢(t) < M in (a,b) and if the mazimum M of ¢ is allained at
an intertor point ¢ of (a,b), then ¢ = M.

Lemma 4.7. [24, Chapter I, Theorem 2] Suppose ¢(t) is a nonconstant function which satisfies
the inequality (4.11) and has one-sided derivatives at a and b, and suppose g 1s bounded on every
closed subinterval of (a,b). If the mazimum of ¢ occursal t=a and g 1is bounded below at
t=a, then ¢'(a) <O0. If the mazimum occurs at t =0 and g is bounded above at t = b, then

¢ (b) > 0.
Lemma 4.8. Suppose that ¢ € C*(a,b) N Ca,b] satisfies the inequality
¢"(t) + g(t)¢'(t) 20 for t€(ab),
where g(t) is bounded on (a,b). If ¢(a) <0 and
TR (112

then
#(t) <0 for t€ [a,b]. (113)

Proof. First, assume that ¢(t) achieves its maximum at to € (a,b). By Lemma 4.6, for t € la, b]
we obtain ¢(t) = ¢(to) = ¢(a) < 0 and so (4.13) holds.

Next, suppose that ¢(t) achieves its maximum at the ends of the interval [a,b]. If we assume
#(t) < ¢(b), t € [a,b], the application of Lemma 4.7 shows that ¢'(b) > 0, which contradicts (4.12).
Thus, by our assumtions, ¢(t) < #(a) <0, t € [a,b], and so (4.13) follows. The proof is complete.

In the last two lemmas we make use the map A defined in the section 3.

Lemma 4.9. Let H1, H2 and H3 be hold. Then, for any y € Vi, the image = by the map A
extsts and it is unique.

Proof. The existence of the image of z follows from Lemma 4.5. In order to see that z is unique,
fix 7 and assume that z is an other image of y by A and consider the function $(t) = =(t) — z[t),
t € [a,b]. Then, it is evident that

f(t,y(t),m’(t),a:"(t)) - f(t,y(t),z’(t),z”(t)) —0, telab]



Next, we construct the equality

F(E9®0.20).2"0) - £ (30, 20,2 ®) + £(£.90),70),2'0)) ~ £ (t.30.20).2®) =,
which can be rewritten in the form

L)#' (1) + Lt)e"(t) =0,

where:

L) = / Fo(t,(2), 7(6) + 02 (1) — 2(2)), 2/ (1)) o,

o) = [ f(tv®.20,2/0) +0@0) - ).

Hence, it follows that the function ¢(¢) is a solution to the BVP

¢%ﬂ+—;%%a@y:m t € [a,b],

#la) =0, ¢'(b)=0.
Moreover, it is easy to conclude that ¢(t) = 0, t € [a,b], is the unique solution of the above BVP.
Consequently, z(t) = z(t), ¢ € [a,b]. The proof of the lemma is complete. O

Lemma 4.10. Let the hypotheses H1 - H4 be hold. If v:1(t),1(t) € Vi are such that
11(t) < ya(t) fort € [a,b], then
z1(t) < z9(t) for t € [a,b],

where x; = Ay;,i=1,2.
Proof. Observe that, by Lemma 4.3, we have
F<Zi(t)< L, t€]ab],

and, by Lemmad4.4, it holds
Mg < iL']H(t) < ﬂ/['g,, e [ab]

Moreover,
Ft <y(t) S9a(t) < Lt, t € [a,b].

Thus, from
fm(t:$:p1Q) >0 for (taxvp:‘ﬁ €T x [FaL] X [m3’M3]

it follows that
0= 1(%.91(),210).21(0)) < £ (1,300, 4 (0), (1)) t € [o,8]

Hence, for ¢ € [a,b] we have

7 (190,20, 550)) - £ (tw(2),2,0),24(1)) < 0
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and then, as in Lemma 4.9, we construct the inequality
£ (t,0(8), 240, 240 ) = £ (1.30(0). T(0), 2400) ) 4 (8,90, 2500), 24 ) — £ (£,32(0), 75(0), 75(1) > 0

from which for ¢(t) = z1(t) — za(t), t € [a,b], we find
S0+ FPFO 0, teli)
where:

1

1@ = [ 5w, 50 + 60 ~ 24(0), 740,
0

3o = [ fa(t0(0,35(0), 250 + 0(a1(0) — () )0

0
Furthermore, ¢(a) =0, ¢'(b) = 0. Finally, applying Lemma 4.8, we see that
&t) <0 for t€la,b],

The proof of the lemma is complete. O

5. Proof of Theorem 3.1. Consider the sequences {u, } and {v, },n=0,1,..., introduced by the
formulas
Upyy = At, and vpqp =Avg, n=0,1,...

In view of Lemma 4.5, from Lemma 4.3 it follows that
Ft =uyg <y and v < v = Lit.
Moreover, Lemma 4.10 and induction arguments imply that
Un1 S Un, UnSUn-1, =12,

On the other hand, since
up < Vo,

by Lemma 4.10 and induction arguments, we conclude that
ey & Uy, =1, Livs
From the above observation it follows that
o % Up = Wy =05 L

Therefore, {u,} is uniformly bounded. Furthermore, since, by Lemma 4.3, {u, } is uniformly
bounded, we see that {u, } is equicontinuous. Finally, since, by Lemma 4.4, {u} } is uniformly
bounded, it follows that the sequence {u } is uniformly bounded and equicontinuous. Thus, we
can apply the Arzela-Ascoli theorem to conclude that there are a subsequence {tn, } and a function
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u € C?[a,b] such that {un,}, {u. } and {u/ } are uniformly convergent on [a,b] to u,u' and u’
respectively. Now, using the fact that w,, = Au,,_, can be rewritten equivalently in the form

= K/ / Ku" (8) + F(8,un,_,(8), un, (8), Un, (s )))ds dr+ B(t —a) + A,

letting ¢ — +00, we obtain

= K_/ / Ku” (8) + f(s,u(s), u(S),u”(s)))ds dr + B(t —a) + A4,

from which it follows that «(t) is a solution to the BVP (1.1).

Remark that, if 2(t) is any solution of (1.1), then, by Lemma 4.3, we have

ug(t) < z(t), t € [a,b].

Applying Lemma 4.10 (it is possible, because r = Az), by induction we obtain

un(t) < z(t), t € [a,b], n=0,1,...,

and then

u(t) < z(t), t € [a,b],

which holds for each solution x(t) € C?[a,b] of the problem (1.1). Consequently, it follows that

u(t) =u™(t), t € [a,b].

By similar arguments, we conclude that

limv, =v™(t), t € [q,b).
Thus, the proof of the theorem is complete. O
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